IP Address Versions

IP version 6 addresses
The rapid exhaustion of IPv4 address space, despite conservation techniques, prompted the Internet Engineering Task Force (IETF) to explore new technologies to expand the Internet's addressing capability. The permanent solution was deemed to be a redesign of the Internet Protocol itself. This next generation of the Internet Protocol, aimed to replace IPv4 on the Internet, was eventually named Internet Protocol Version 6 (IPv6) in 1995[3][4] The address size was increased from 32 to 128 bits or 16 octets, which, even with a generous assignment of network blocks, is deemed sufficient for the foreseeable future. Mathematically, the new address space provides the potential for a maximum of 2128, or about 3.403 × 1038 unique addresses.

The new design is not based on the goal to provide a sufficient quantity of addresses alone, but rather to allow efficient aggregation of subnet routing prefixes to occur at routing nodes. As a result, routing table sizes are smaller, and the smallest possible individual allocation is a subnet for 264 hosts, which is the size of the square of the size of the entire IPv4 Internet. At these levels, actual address utilization rates will be small on any IPv6 network segment. The new design also provides the opportunity to separate the addressing infrastructure of a network segment—that is the local administration of the segment's available space—from the addressing prefix used to route external traffic for a network. IPv6 has facilities that automatically change the routing prefix of entire networks should the global connectivity or the routing policy change without requiring internal redesign or renumbering.

The large number of IPv6 addresses allows large blocks to be assigned for specific purposes and, where appropriate, to be aggregated for efficient routing. With a large address space, there is not the need to have complex address conservation methods as used in classless inter-domain routing (CIDR).

All modern[update] desktop and enterprise server operating systems include native support for the IPv6 protocol, but it is not yet widely deployed in other devices, such as home networking routers, voice over Internet Protocol (VoIP) and multimedia equipment, and network peripherals.

Example of an IPv6 address:

2001:0db8:85a3:08d3:1319:8a2e:0370:7334




IPv6 private addresses

Just as IPv4 reserves addresses for private or internal networks, there are blocks of addresses set aside in IPv6 for private addresses. In IPv6, these are referred to as unique local addresses (ULA). RFC 4193 sets aside the routing prefix fc00::/7 for this block which is divided into two /8 blocks with different implied policies (cf. IPv6) The addresses include a 40-bit pseudorandom number that minimizes the risk of address collisions if sites merge or packets are misrouted.

Early designs (RFC 3513) used a different block for this purpose (fec0::), dubbed site-local addresses. However, the definition of what constituted sites remained unclear and the poorly defined addressing policy created ambiguities for routing. The address range specification was abandoned and must no longer be used in new systems.

Addresses starting with fe80: — called link-local addresses — are assigned only in the local link area. The addresses are generated usually automatically by the operating system's IP layer for each network interface. This provides instant automatic network connectivity for any IPv6 host and means that if several hosts connect to a common hub or switch, they have an instant communication path via their link-local IPv6 address. This feature is used extensively, and invisibly to most users, in the lower layers of IPv6 network administration (cf. Neighbor Discovery Protocol).

None of the private address prefixes may be routed in the public Internet.

1 komentar:

Vengadachalam T said...

I know the Ip-address only but ip-address versions i don't have any idea..I got here..I used the site http://www.ip-details.com/ to find the Ip-address.

Post a Comment